miércoles, 12 de febrero de 2014

PERMUTACIONES

Una permutación es una combinación en donde el orden es importante. La notación para permutaciones es P(n,r) que es la cantidad de permutaciones de “n” elementos si solamente se seleccionan “r”.




 entran todos los elementos.
 importa el orden.
No se repiten los elementos.

Ejemplo: Si nueve estudiantes toman un examen y todos obtienen diferente calificación, cualquier alumno podría alcanzar la calificación más alta. La segunda calificación más alta podría ser obtenida por uno de los 8 restantes. La tercera calificación podría ser obtenida por uno de los 7 restantes.

La cantidad de permutaciones posibles sería: P(9,3) = 9*8*7 = 504 combinaciones posibles de las tres calificaciones más altas.

El mánager de un equipo de beisbol debe determinar el orden al bat  de sus jugadores¿ cuantos ordenes hay?

Ahora debemos elegir a todos los nueve jugadores que abren el juego y hay por lo tanto 9P9 = 9x8x7x6x5x4x3x2x1=362880 órdenes posibles al bat.
Ejemplos:
1)      ¿Cuantas representaciones diferentes serán posibles formar, si se desea que consten de Presidente, Secretario, Tesorero, Primer Vocal y Segundo Vocal?, sí esta representación puede ser formada de entre 25 miembros del sindicato de una pequeña empresa.

Solución:

Por principio multiplicativo:

25 x 24 x 23 x 22 x 21 = 6,375,600 maneras de formar una representación de ese sindicato que conste de presidente, secretario, etc., etc.


Por Fórmula:





n = 25,      r = 5

25P5 = 25!/ (25 –5)! = 25! / 20! = (25 x 24 x 23 x 22 x 21 x....x 1) / (20 x 19 x 18 x ... x 1)=

          = 6,375,600 maneras de formar la representación

No hay comentarios:

Publicar un comentario